C1

Worksheet A

1	1 Find the gradient of the line segment joining each pair of points.					
	a (3, 1) and (5, 5) b (4,	7) and (10, 9)	c (6, 1) and (2	d (-2, 2) and (2, d)	8)	
	e (1, 3) and (7, -1) f (4,	5) and (-5, -7)	g (-2, 0) and	(0, -8) h $(8, 6)$ and $(-7, -7)$	-2)	
2	Write down the gradient and y-intercept of each line.					
	a $y = 4x - 1$ b $y =$	$\frac{1}{3}x + 3$	$\mathbf{c} y = 6 - x$	d $y = -2x - \frac{3}{5}$		
3	Find the gradient and y-interce	ent of each line				
U	a $x + y + 3 = 0$ b $x - 3$	2v - 6 = 0	c $3x + 3y - 2$	= 0 d $4x - 5y + 1 = 0$)	
4	write down, in the form $y - y_1 = m(x - x_1)$, the equation of the straight line with the given gradient which passes through the given point.					
	a gradient 2, point (4, 1)	1	b gradient 5,	point (2, -5)		
	c gradient -3 , point $(-1, $	1)	d gradient $\frac{1}{2}$,	point (1, 6)		
	e gradient -2, point $(\frac{3}{4}, -$	$-\frac{1}{4}$)	f gradient $-\frac{1}{5}$, point $(-3, -7)$		
5	Find, in the form $y = mx + c$.	the equation of	the straight line	with the given gradient whi	ch	
•	passes through the given point.					
	a gradient 3, point (1, 2)	1	b gradient –1	, point (5, 3)		
	c gradient 4, point $(-2, -2)$	-3)	d gradient −2	, point (-4, 1)		
	e gradient $\frac{1}{3}$, point (-3,	1)	f gradient $-\frac{5}{6}$, point (9, -2)		
6	Find, in each case, the equation	n of the straight	line with gradier	nt m which passes through t	he	
	point P. Give your answers in	the form $ax + b$	by + c = 0, where	<i>a</i> , <i>b</i> and <i>c</i> are integers.		
	a $m = 1$, $P(2, -4)$	b $m = \frac{1}{2}$,	P(6,1)	c $m = -4$, $P(-1, 8)$		
	d $m = \frac{2}{5}, P(-3, 5)$	e $m = -3$,	$P\left(\tfrac{3}{2},-\tfrac{1}{8}\right)$	f $m = -\frac{3}{4}$, $P(\frac{2}{3}, -7)$		
7	Find, in the form $y = mx + c$,	the equation of t	he straight line p	assing through each pair of	points.	
	a (0, 1) and (4, 13)	b (2, 9) and ((7, -1)	c (-4, 3) and (2, 7)		
	d $(-\frac{1}{2}, -2)$ and $(2, 8)$	e (3, −2) and	(18, -5)	f (-3.2, 4) and (-2, 0.4)		
8	Find, in the form $ax + by + c$	= 0, where a, b	and c are integer	s, the equation of the straig	ht line	
	which passes through each pair of points.					
	a (3, 0) and (5, 2)	b (-1, 8) and	(5, -4)	c (-5, 3) and (7, 5)		
	d (-4, -1) and (8, -17)	e $(2, -1.5)$ and	nd (7, 0)	f $\left(-\frac{3}{5}, \frac{1}{10}\right)$ and $(3, 1)$		
9	The straight line <i>l</i> passes through	igh the points A	(-6, 8) and <i>B</i> (3,	2).		
	a Find an equation of the line <i>l</i> .					
	b Show that the point $C(9, -2)$ lies on l .					
10	The point $M(k, 2k)$ lies on the	line with equat	ion $r = 3v + 15$	- 0		

Find the value of the constant *k*.

The point with coordinates $(4p, p^2)$ lies on the line with equation 2x - 4y + 5 = 0. 11 Find the two possible values of the constant *p*. Find the coordinates of the points at which each straight line crosses the coordinate axes. 12 **b** x - 3y + 6 = 0 **c** 2x + 4y - 3 = 0 **d** 5x - 3y = 10**a** y = 2x + 5The line *l* has the equation 5x - 18y - 30 = 0. 13 **a** Find the coordinates of the points A and B where the line l crosses the coordinate axes. **b** Find the area of triangle *OAB* where *O* is the origin. 14 Find the exact length of the line segment joining each pair of points, giving your answers in terms of surds where appropriate. **c** (1, -4) and (9, 11) **a** (1, 1) and (4, 5) **b** (0, 0) and (3, 1)**d** (7, -8) and (-9, 4)e (3, 12) and (1, 7) f (-6, -3) and (2, -7)15 The points P(22, 15), Q(-13, c) and R(k, 24) all lie on a circle, centre (2, 0). Find the radius of the circle and the possible values of the constants *c* and *k*. 16 The points A(-2, 7) and B(6, -3) lie at either end of the diameter of a circle. Find the area of the circle, giving your answer as an exact multiple of π . 17 The corners of a triangle are the points P(4, 7), Q(-2, 5) and R(3, -10). **a** Find the length of each side of triangle *PQR*, giving your answers in terms of surds. **b** Hence, verify that triangle *PQR* contains a right-angle. **c** Find the area of triangle *PQR*. 18 Find the coordinates of the mid-point of the line segment joining each pair of points. **a** (0, 2) and (8, 4) **b** (1, 9) and (7, 5) **c** (-5, 1) and (3, -7)**d** (-5, -7) and (7, -5) f (-1, -2) and (4, -5)e (1, 0) and (2, 9)**h** (0, 3) and $(\frac{1}{2}, \frac{3}{2})$ **i** $(-\frac{5}{4}, 2)$ and $(-1, -\frac{3}{5})$ **g** (2.4, 3.1) and (0.6, 4.5) The straight line l_1 passes through the points P(-2, 1) and Q(4, -1). 19 **a** Find the equation of l_1 in the form ax + by + c = 0, where a, b and c are integers. The straight line l_2 passes through the point R (2, 4) and through the mid-point of PQ. **b** Find the equation of l_2 in the form y = mx + c. 20 Find the coordinates of the point of intersection of each pair of straight lines. **a** y = 2x + 1**b** v = x + 7**c** v = 5x - 4y = 3x - 1y = 4 - 2xy = 3x - 1**d** x + 2y - 4 = 0**e** 2x + y - 2 = 0**f** 3x + 2y = 0x + 3y + 9 = 03x - 2y + 4 = 0x + 4y - 2 = 0The line *l* with equation x - 2y + 2 = 0 crosses the y-axis at the point *P*. The line *m* with 21 equation 3x + y - 15 = 0 crosses the y-axis at the point Q and intersects l at the point R. Find the area of triangle PQR.

© Solomon Press

PMT

C1

1	Find the gradient of a straight line that is						
	a parallel to the line $y = 3 - 2x$, b parallel to the line $2x - 5y + 1 = 0$,						
	c perpendicular to the line $y = 3x + 4$, d perpendicular to the line $x + 2y - 3 = 0$.						
2	Find, in the form $y = mx + c$, the equation of the straight line						
	a parallel to the line $y = 4x - 1$ which passes through the point with coordinates (1, 7),						
	b perpendicular to the line $y = 6 - x$ which passes through the point with coordinates (-4, 3),						
	c perpendicular to the line $x - 3y = 0$ which passes through the point with coordinates $(-2, -2)$						
3	Find, in the form $ax + by + c = 0$, where a, b and c are integers, the equation of the straight line						
	a parallel to the line $2x - 3y + 5 = 0$ which passes through the point with coordinates $(3, -1)$,						
	b perpendicular to the line $3x + 4y = 1$ which passes through the point with coordinates (2, 5),						
	c parallel to the line $3x + 5y = 6$ which passes through the point with coordinates (-4, -7).						
4	Find, in the form $ax + by + c = 0$, where a, b and c are integers, the equation of the						
	perpendicular bisector of the line segment joining each pair of points. $(2, 5) = 1/(2,$						
	a (0, 4) and (8, 0) b (2, 7) and (4, 1) c (-3, -2) and (9, 1)						
5	The vertices of a triangle are the points $A(-6, -3)$, $B(4, -1)$ and $C(3, 4)$. a Find the gradient of <i>AB</i> and the gradient of <i>BC</i> .						
	b Show that $\angle ABC = 90^{\circ}$.						
6	The line with equation $2x - 3y + 5 = 0$ is perpendicular to the line with equation $3x + ky - 1 = 0$. Find the value of the constant <i>k</i> .						
7	The straight line <i>l</i> passes through the points $A(-5, 5)$ and $B(1, 7)$.						
	a Find an equation of the line <i>l</i> . Give your answer in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and are integers.						
	The point M is the mid-point of AB .						
	b Prove that the line OM , where O is the origin, is perpendicular to line l .						
8	The straight line <i>p</i> has the equation $3x - 4y + 8 = 0$.						
	The straight line q is parallel to p and passes through the point with coordinates (8, 5).						
	a Find the equation of q in the form $y = mx + c$.						
	The straight line r is perpendicular to p and passes through the point with coordinates (-4, 6).						
	b Find the equation of r in the form $ax + by + c = 0$, where a, b and c are integers.						
	c Find the coordinates of the point where lines q and r intersect.						
9	The straight line l_1 passes through the points with coordinates (-3, 7) and (1, -5).						
	a Find an equation of the line l_1 in the form $ax + by + c = 0$, where a, b and c are integers.						
	The line l_2 is perpendicular to l_1 and passes through the point with coordinates (4, 6).						

b Find, in the form $k\sqrt{5}$, the distance from the origin of the point where l_1 and l_2 intersect.

- 1 The straight line *l* has gradient -3 and passes through the point with coordinates (3, -5).
 - **a** Find an equation of the line l.
 - The straight line *m* passes through the points with coordinates (-1, -2) and (4, 1).
 - **b** Find the equation of *m* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The lines l and m intersect at the point P.

- **c** Find the coordinates of *P*.
- 2 Given that the straight line passing through the points A (2, -3) and B (7, k) has gradient $\frac{3}{2}$,
 - **a** find the value of k,

C1

- **b** show that the perpendicular bisector of *AB* has the equation 8x + 12y 45 = 0.
- **3** The vertices of a triangle are the points A(5, 4), B(-5, 8) and C(1, 11).
 - **a** Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
 - **b** Find the coordinates of the point M, the mid-point of AC.
 - **c** Show that OM is perpendicular to AB, where O is the origin.

The line *l* with equation 3x + y - 9 = 0 intersects the line *m* with equation 2x + 3y - 12 = 0 at the point *A* as shown in the diagram above.

a Find, as exact fractions, the coordinates of the point A.

The region R_1 is bounded by l, m and the y-axis.

The region R_2 is bounded by l, m and the x-axis.

b Show that the ratio of the area of R_1 to the area of R_2 is 25 : 18

5

4

The straight line *l* has the equation 2x + 5y + 10 = 0.

The straight line *m* has the equation 6x - 5y - 30 = 0.

a Sketch the lines *l* and *m* on the same set of axes showing the coordinates of any points at which each line crosses the coordinate axes.

The points where line m crosses the coordinate axes are denoted by A and B.

b Show that *l* passes through the mid-point of *AB*.

PMT

6 The straight line *l* passes through the points with coordinates (-10, -4) and (5, 4).

a Find the equation of *l* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The line l crosses the coordinate axes at the points P and Q.

- **b** Find, as an exact fraction, the area of triangle *OPQ*, where *O* is the origin.
- **c** Show that the length of PQ is $2\frac{5}{6}$.

7 The point *A* has coordinates (-8, 1) and the point *B* has coordinates (-4, -5).

- **a** Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
- **b** Show that the distance of the mid-point of *AB* from the origin is $k\sqrt{10}$ where *k* is an integer to be found.

8 The straight line l_1 has gradient $\frac{1}{3}$ and passes through the point with coordinates (-3, 4).

a Find the equation of l_1 in the form ax + by + c = 0, where a, b and c are integers.

The straight line l_2 has the equation 5x + py - 2 = 0 and intersects l_1 at the point with coordinates (q, 7).

b Find the values of the constants p and q.

The diagram shows trapezium *ABCD* in which sides *AB* and *DC* are parallel. The point *A* has coordinates (-4, 2) and the point *B* has coordinates (6, 6).

a Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

Given that the gradient of BC is -1,

b find an equation of the straight line passing through *B* and *C*.

- Given also that the point D has coordinates (-2, 7),
- c find the coordinates of the point C,
- **d** show that $\angle ACB = 90^{\circ}$.

10 The straight line *l* passes through the points *A* (1, $2\sqrt{3}$) and *B* ($\sqrt{3}$, 6).

- **a** Find the gradient of l in its simplest form.
- **b** Show that l also passes through the origin.
- c Show that the straight line which passes through A and is perpendicular to l has equation

$$x + 2\sqrt{3} y - 13 = 0.$$

(4)

(4)

(3)

1	The straight line <i>l</i> has the equation $y = 1 - 2x$.				
	The straight line <i>m</i> is perpendicular to <i>l</i> and passes through the point with coordinates $(6, -1)$.				
	a Find the equation of <i>m</i> in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	(4)			
	b Find the coordinates of the point where l and m intersect.	(3)			
2	The straight line <i>l</i> passes through the point $A(1, -3)$ and the point $B(7, 5)$.				
	a Find an equation of line <i>l</i> .	(3)			
	The line <i>m</i> has the equation $4x + y - 17 = 0$ and intersects <i>l</i> at the point <i>C</i> .				
	b Show that C is the mid-point of AB .	(4)			
	c Show that the straight line perpendicular to m which passes through the point C also passes through the origin.	(4)			
3	The point A has coordinates $(-2, 7)$ and the point B has coordinates $(4, p)$.				
	The point <i>M</i> is the mid-point of <i>AB</i> and has coordinates $(q, \frac{9}{2})$.				
	a Find the values of the constants p and q .	(3)			
	b Find the equation of the straight line perpendicular to AB which passes through the point A. Give your answer in the form $ax + by + c = 0$, where a, b and c are integers.	(5)			

C1

The points P(-5, -2), Q(-1, 6), R(7, 7) and S(3, -1) are the vertices of a parallelogram as shown in the diagram above.

- **a** Find the length of PQ in the form $k\sqrt{5}$, where k is an integer to be found.(3)**b** Find the coordinates of the point M, the mid-point of PQ.(2)
- **c** Show that *MS* is perpendicular to *PQ*.
- **d** Find the area of parallelogram *PQRS*.
- 5 The straight line *l* is parallel to the line 2x y + 4 = 0 and passes through the point with coordinates (-1, -3).
 - **a** Find an equation of line *l*.

The straight line *m* is perpendicular to the line 6x + 5y - 2 = 0 and passes through the point with coordinates (4, 4).

- **b** Find the equation of line *m* in the form ax + by + c = 0, where *a*, *b* and *c* are integers. (5)
- c Find, as exact fractions, the coordinates of the point where lines l and m intersect. (3)

- The straight line *l* has gradient $\frac{1}{2}$ and passes through the point with coordinates (2, 4). 6
 - **a** Find the equation of *l* in the form ax + by + c = 0, where *a*, *b* and *c* are integers. (3) The straight line *m* has the equation y = 2x - 6.
 - **b** Find the coordinates of the point where line *m* intersects line *l*. (3)
 - **c** Show that the quadrilateral enclosed by line *l*, line *m* and the positive coordinate axes is a kite. (4)

7

The diagram shows the straight line l with equation x + 2y - 20 = 0 and the straight line m which is perpendicular to *l* and passes through the origin *O*.

a Find the coordinates of the points A and B where l meets the x-axis and y-axis (2)respectively.

Given that *l* and *m* intersect at the point *C*,

- **b** find the ratio of the area of triangle *OAC* to the area of triangle *OBC*. (5)
- The straight line *p* has the equation 6x + 8y + 3 = 0. 8

The straight line q is parallel to p and crosses the y-axis at the point with coordinates (0, 7).

a Find the equation of q in the form y = mx + c.

The straight line r is perpendicular to p and crosses the x-axis at the point with coordinates (1, 0).

- **b** Find the equation of r in the form ax + by + c = 0, where a, b and c are integers. (4)
- **c** Show that the point where lines q and r intersect lies on the line y = x. (4)
- 9 The vertices of a triangle are the points P(3, c), Q(9, 2) and R(3c, 11) where c is a constant. Given that $\angle PQR = 90^{\circ}$,
 - **a** find the value of c, (5) **b** show that the length of PQ is $k\sqrt{10}$, where k is an integer to be found, (3)
 - **c** find the area of triangle *PQR*.
- 10 The straight line l_1 passes through the point P(1, 3) and the point Q(13, 12).
 - **a** Find the length of *PQ*. (2) **b** Find the equation of l_1 in the form ax + by + c = 0, where a, b and c are integers. (4) The straight line l_2 is perpendicular to l_1 and passes through the point R (2, 10).
 - **c** Find an equation of line l_2 . (3)
 - **d** Find the coordinates of the point where lines l_1 and l_2 intersect. (3) (3)
 - e Find the area of triangle *PQR*.

(2)

(4)